通知:9月1日因服务器突发状况,部分用户可能登录出现问题。如无法正常登录,请联系小咖(微信号:xys2018ykf)我知道了

1:1倾向性评分匹配(PSM)

SPSS教程其他
问答

点击绿色“提问”按钮

  • 针对本文提问
  • 查看历史问答

长按鼠标选中正文某句话

  • 对选中的内容进行针对性提问
一、问题与数据

谈起临床研究,如何设立一个靠谱的对照,有时候成为整个研究成败的关键。对照设立的一个非常重要的原则就是可比性,简单说就是对照组除了研究因素外,其他的因素应该尽可能和试验组保持一致,这里就不得不提随机对照试验。众所周知,随机对照试验中研究对象是否接受干预是随机的,这就保证了组间其他混杂因素均衡可比。

 

但是有些时候并不能实现随机化,比如说观察性研究。这时候倾向性评分匹配(propensity score matching, PSM)可以有效降低混杂偏倚,并且在整个研究设计阶段,得到类似随机对照研究的效果,想看实例赶快戳:队列研究常用的倾向评分,到底是个啥?。与常规匹配相比,倾向性评分匹配能考虑更多匹配因素,提高研究效率。

 

这么“高大上”的倾向性评分匹配,是不是超级难学?错矣!今天就带大家轻松搞定1:1倾向性评分匹配。作为“稀罕”大招,并不是在所有版本的SPSS都可以实现倾向性评分匹配,仅在SPSS22及以上自带简易版PSM,对于其他版本或者想要体验完整版功能,就不得不去安装相应的软件(R软件、SPSS R插件、PS matching插件。。。超级难安装!那是需要运气和耐心的!感兴趣的小伙伴可以私聊~~~)。

 

本次使用SPSS22为大家演示1:1倾向性评分匹配。

 

某研究小白想搞明白吸烟和高血压之间的关系,准备利用某项调查的资料进一步随访研究吸烟和高血压的关联,该项研究包括233名吸烟者,949 名不吸烟者。如果全部随访,研究小白感觉鸭梨山大,所以打算从中选取部分可比的个体进行随访。

 

这两组人群一些主要特征的分布存在显著差异(见表1),现准备采用PS最邻近匹配法选取可比的个体作为随访对象。

 

表1. 两组基线情况比较(匹配前)

二、SPSS操作
请先登录
这么重要的内容,赶快登录查看吧!
三、结果解释
请先登录
这么重要的内容,赶快登录查看吧!
四、延伸阅读

PSM一般分为三种类型:

 

1、PS最邻近匹配:是PSM最基本的方法,即直接从对照中寻找一个或多个与处理组个体PS值相同或相近的个体作为配比对象。本次我们就采用的是这个方法。

 

2、分层PSM:PS最邻近匹配尽管可以使协变量总体趋于平衡,但不能保证每个协变量分布完全一致。可以根据某个重要变量(如性别)分层后,分别对每层人群进行PS最邻近匹配,然后再将配比人群合并,这样就可以保证该重要变量在组间分布完全一致。

 

3、与马氏配比结合的PSM:PSM与马氏配比结合后可以增加个别重点变量平衡能力,实现过程比较复杂。

请先登录
这么重要的内容,赶快登录查看吧!
描述问题
选择一个标签 (请选择一个与您问题最相符的标签)
提交问题
Next
Previous
描述问题
选择一个标签 (请选择一个与您问题最相符的标签)
提交问题
描述问题
选择一个标签 (请选择一个与您问题最相符的标签)
    提交问题