SPSS详细教程:含时间依存协变量Cox回归模型(时依系数法)

专题合集更多教程

作者:龚志忠

 

Cox回归模型有效地解决了对生存资料进行多因素分析的问题,但是应用Cox回归模型有一个非常重要的前提条件,即比例风险(Proportional hazards)假定,简称PH假定,其基本假设为:协变量对生存率的影响不随时间的改变而改变。只有当PH假定得到满足时,Cox回归模型的结果才有意义。

 

在前期的内容中,对于分类变量和连续变量,小咖分别向大家讲解了如何利用SPSS软件来检验PH假定(详细戳链接:《SPSS详细教程:Cox回归中,分类变量的PH假定检验》、《SPSS详细教程:Cox回归中,连续变量的PH假定检验》)。

 

那么大家可能比较关心,如果协变量不满足PH假定时,应该怎么处理呢?本期内容小咖将为大家介绍一种拓展的Cox回归模型方法--含时间依存协变量Cox回归模型

 

含时间依存协变量Cox回归模型(时依系数法)

 

含时间依存协变量Cox回归模型(Time-Dependent Cox Regression Model),是一种非比例风险模型(Non-proportional Hazard Model),我们把不满足PH假定的协变量定义为时间依存协变量,并将其引入Cox回归模型中,即构成含时间依存协变量Cox回归模型。

 

含时间依存协变量一般可以分为两种情况,即外在时间依存协变量和内在时间依存协变量,本期内容我们先讨论外在时间依存协变量的情况。

 

外在时间依存协变量:当时间依存协变量的取值不随时间的变化而变化,但其效应值(RR)会随时间而改变时,这个时候我们把这类协变量被称为外在时间依存协变量。模型可以表示为:

 

h(X, t)=h(t)exp(αX+βXt)

 

其中h(t)表示风险函数,αX表示自变量X对风险函数的原始影响,βXt表示自变量X影响的时间校正。

 

对于这种情况,我们可以在Cox回归模型中引入一个含时间与协变量的交互作用项,一般取不满足等比例风险的协变量与时间函数的乘积项,最常见的时间函数是取时间变量的自然对数,即Ln(T)*X,这种方法称为时依系数法。

 

采用含时间依存自变量Cox回归模型判断自变量是否具有时间依存性,需要检验时间依存协变量的回归系数是否为0,如果回归系数与0有显著性差异,说明该自变量具有时间依存性,反之则没有时间依存性,可以直接构建Cox回归模型。

 

案例数据

 

数据库变量:

1、结局变量stroke:1代表发生结局,0代表未发生结局

2、分组变量treatment:2种不同的治疗方法,取值分别为1和2

3、时间变量time:单位“月”

4、协变量age:单位“岁”

 

操作步骤

 

在前期文章《SPSS详细教程:Cox回归中,连续变量的PH假定检验》中,我们通过Schoenfeld残差法已经验证了年龄age不满足PH假定,不适宜采用Cox回归分析,因此我们采用含时间依存变量Cox回归方法构建模型进行分析。

 

1、Analyze → Survival → Cox w/Time-Dep Cov

 

 

2、在Compute Time-Dependent Covariate对话框中设定时依协变量的计算公式,可以发现在变量列表框中,有一个变量“ Time[T_] ”,SPSS用其代替时间变量来构建时间依存协变量,并将构建好的时间依存协变量命名为“T_COV_”。一般取协变量与时间函数的乘积项,最常见的时间函数是取时间变量的自然对数。

 

首先在Function group框中选择Arithmetic,在Functions and Special Variables框中双击自然对数Ln,此时Expression for T_COV_框中出现LN(?),将Time[T_]选入Expression for T_COV_框中,变成LN(T_)。接下来点击乘号“*”,将age选入Expression for T_COV_框中,形成时间依存协变量的计算公式:LN(T_) *age

 

 

3、点击Model,进入Cox Regression对话框,将时间time选入Time框,将事件Stroke选入Status框,并点击Define Event,在Single Value框中填入1,然后将协变量Treatment、age和时间依存协变量T_COV_一同选入Covariates框中,最后点击OK完成操作。

 

 

结果解读

 

1、模型拟合结果

 

在没有纳入自变量时,模型的-2 log Likelihood(对数似然比)为1180.283,纳入时间依存协变量后,模型的-2 log Likelihood(对数似然比)为1105.164,减少了75.119,显著性检验P<0.001,说明时间依存协变量对模型具有一定的影响。

 

2、含时间依存协变量Cox回归结果

 

时间依存协变量T_COV_的回归系数β为0.024,P=0.009,说明与0相比有显著性差异,提示自变量age具有时间依存性,进一步证实了其不满足风险比例Cox回归模型的PH假定要求,故此处应采用时间依存协变量Cox回归模型。

 

由于age的作用会随着时间的变化而变化,所以此时不能只用HR=Exp(0.029)=1.030来简单描述年龄age对结局事件stroke的影响,age的效应值HR应该是一个时间函数,即表示为HR=Exp(0.029+0.024×ln(t))。比如当时间为10个月时,年龄对应的HR=Exp(0.029+0.024×ln(10))=1.088。

 

如果需要本文数据进行练习,可以点击页面右侧的“下载资料”下载原始数据进行练习。

 

扫码关注“医咖会”公众号,及时获取最新统计教程!

描述问题
选择一个标签 (请选择一个与您问题最相符的标签)
提交问题
我要提问
描述问题
选择一个标签 (请选择一个与您问题最相符的标签)
提交问题
描述问题
选择一个标签 (请选择一个与您问题最相符的标签)
    提交问题