研究方法
从一名医生的角度谈谈对人工智能的理解
李健民

李健民

某医学AI公司

擅长:临床研究设计和分析
已关注
关注
2019-12-10 来源:医咖会

我是一名消化内科医生,平日的工作是消化内镜的诊疗,统计学是爱好,近年来,我常常在思考我们以前在研究生时学的统计学和现在火得一塌糊涂的人工智能有什么联系,我们年轻医生有没有可能利用这方面的知识为研究增添亮点。

任正非曾说过,人工智能就是统计学。我们医生在做临床研究的时候,会接触到诸如t检验、方差分析、各种回归建模等常见的统计方法,这些方法在医咖会的SPSS全套教程(【合集】75篇SPSS统计操作教程,全在这里!)中都有详细的讲解。那么这些统计学方法可以和高大上的人工智能扯上关系吗?

今年6月,国内的《中华消化杂志》还专门设了一期人工智能的专栏,然而这些综述罗列了一些列的研究成果与晦涩的概念,理解门槛较高。我试试从一个一线临床医生的角度谈谈我对传统医学统计学到人工智能的理解,因水平有限,文章不会涉及太多的公式原理,只讲自己一些较为通俗的理解。

环顾各式各样医学统计学的书籍,你会发现到处都是无效假设、备择假设、α、β、P值这些绕得要死的概念,前一天或许你还清清楚楚背了下来,不用几天,又不记得具体含义了。之所以这些概念那么绕口,我认为是因为医学统计学所涉及的大都属于“频率学派”的内容,其基石是假设检验,而这假设检验又是需要用到绕口的反证法。

举个简单的例子,甲发明了一种新药物,想了解它是否对治疗感冒有效,于是找了100个人吃药,作为药物组,另100个人吃安慰剂,作为对照组。甲的试验发现药物组的治疗有效人数是60个,对照组是40个,60%对40%,所以甲认为是有效的;

乙也发明了一种药物,也做了同样的试验,发现有效率分别是60%和50%。乙看了甲的试验结果想了想,反正药物组有效率都差不多,只是对照组的结果有点区别而已,那我的药物也是有效的。