大量混杂因素要调整?这4种倾向性分析方法你值得了解!
龚志忠

龚志忠

首都医科大学附属北京中医医院

擅长:临床研究数据统计分析、流行病学方法设计、临床预测模型建模与评价
已关注
关注
2019-04-16 来源:医咖会

在前两期的内容中,我们分别介绍了两种在观察性研究中最常用的控制混杂因素的方法,即分层分析法多因素调整分析法,这两种方法操作起来较为简单也易于理解,但是他们都有一个共同的局限性,也就是同时调整的混杂因素的数量不能太多,且受到结局事件例数的限制。

如果有大量的混杂因素需要同时进行调整的话,此时该怎么办呢?今天我们就来继续为大家介绍一种高大上的控制混杂因素的常用方法——倾向性分析(Propensity Analysis)

倾向性评分

在介绍倾向性分析方法之前,我们先介绍一个非常重要的概念:倾向性评分。顾名思义,倾向性评分是指在一定协变量条件下,一个观察对象接受某种暴露/处理因素的可能性,它是一个从0到1的范围内连续分布的概率值。

其基本原理是将多个混杂因素的影响用一个综合的倾向性评分来表示,从而降低了协变量的纬度,减少了自变量的个数,有效的克服了分层分析和多因素调整分析中要求自变量个数不能太多的短板。

那么在进行倾向性分析之前,第一步就是要计算出每个研究对象的倾向性评分。倾向性评分的估计是以暴露/处理因素作为因变量Y(0或1),其他混杂因素作为自变量X,通过建立一个回归模型来估计每个研究对象接受暴露/处理因素的可能性,最为常用的是logistic回归模型。

用logistic回归模型估计倾向性评分,操作简单容易实现,可以直接得到倾向性评分分值,结果也易于理解。倾向性评分越接近于1,说明患者接受某种暴露/处理因素的可能性更高,越接近于0,说明患者不接受任何暴露/处理因素的可能性更大。

在观察性研究中,通过倾向性评分来调整组间个体的差异,除了暴露/处理因素和结局变量分布不同外,可认为其他混杂因素都均衡可比,相当于进行了“事后随机化”,使观察性研究的数据达到近似随机分配的效果。