多重线性回归-SPSS教程
李侗桐

李侗桐

北京大学

擅长:卫生统计学、定性分析方法、卫生经济学、全球卫生政策分析
已关注
关注
2017-12-22 来源:医咖会

一、问题与数据

最大携氧能力(maximal aerobic capacity,VO2 max)是评价人体健康的关键指标,但测量方法复杂,不易实现。具体原因在于,它不仅需要昂贵的试验设备,还需要研究对象运动到个人承受能力的极限,无法测量那些没有运动意愿或患有高危疾病无法运动的研究对象。因此,某研究者拟通过一些方便、易得的指标建立研究对象最大携氧能力的预测模型。该研究者共招募100位研究对象,分别测量他们的最大携氧能力(VO2 max),并收集年龄(age)、体重(weight)、运动后心率(heart_rate)和性别(gender)等变量信息。部分数据图1。

图1 部分数据

二、对问题分析

研究者想根据一些变量(age、weight、heart_rate和gender)预测另一个变量(VO2 max)。针对这种情况,可以使用多重线性回归分析,但需要先满足以下8项假设:

假设1:因变量是连续变量。

假设2:自变量不少于2个(连续变量或分类变量都可以)。

假设3:各观测值之间相互独立,即残差之间不存在自相关。

假设4:因变量和自变量之间存在线性关系。

假设5:残差的方差齐。

假设6:不存在多重共线性。

假设7:没有显著异常值。

假设8:残差近似正态分布。

假设1和假设2与研究设计有关。本研究数据符合假设1和2。如何考虑假设3-8呢?

三、SPSS操作

3.1 多重线性回归

SPSS运行多重线性回归后,可以在结果中检验假设3-8。

在主界面点击Analyze→Regression→Linear,在Linear Regression对话框中,将因变量(VO2 max)放入Dependent栏,再将自变量(age,weight,heart_rate和gender)放入Independent栏。如图2。

试读结束,兑换后即可解锁本专栏全部课程
公众号
统计咨询
扫一扫添加小咖个人微信,立即咨询统计分析服务!
数据库搭建
想提升科研效率和数据质量?扫码添加小E,立即咨询数据采集与管理相关产品和服务!查看详细>>
意见反馈